Open Access Research

IL-7Rα and L-selectin, but not CD103 or CD34, are required for murine peanut-induced anaphylaxis

Steven Maltby1, Erin J DeBruin1, Jami Bennett1, Matthew J Gold1, Matthew C Tunis2, Zhiqi Jian1, Jean S Marshall2 and Kelly M McNagny1*

  • * Corresponding author: Kelly M McNagny kelly@brc.ubc.ca

  • † Equal contributors

Author Affiliations

1 The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada

2 Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada

For all author emails, please log on.

Allergy, Asthma & Clinical Immunology 2012, 8:15  doi:10.1186/1710-1492-8-15

Published: 31 August 2012

Abstract

Background

Allergy to peanuts results in severe anaphylactic responses in affected individuals, and has dramatic effects on society and public policy. Despite the health impacts of peanut-induced anaphylaxis (PIA), relatively little is known about immune mechanisms underlying the disease. Using a mouse model of PIA, we evaluated mice with deletions in four distinct immune molecules (IL7Rα, L-selectin, CD34, CD103), for perturbed responses.

Methods

PIA was induced by intragastric sensitization with peanut antigen and cholera toxin adjuvant, followed by intraperitoneal challenge with crude peanut extract (CPE). Disease outcome was assessed by monitoring body temperature, clinical symptoms, and serum histamine levels. Resistant mice were evaluated for total and antigen specific serum IgE, as well as susceptibility to passive systemic anaphylaxis.

Results

PIA responses were dramatically reduced in IL7Rα−/− and L-selectin−/− mice, despite normal peanut-specific IgE production and susceptibility to passive systemic anaphylaxis. In contrast, CD34−/− and CD103−/− mice exhibited robust PIA responses, indistinguishable from wild type controls.

Conclusions

Loss of L-selectin or IL7Rα function is sufficient to impair PIA, while CD34 or CD103 ablation has no effect on disease severity. More broadly, our findings suggest that future food allergy interventions should focus on disrupting sensitization to food allergens and limiting antigen-specific late-phase responses. Conversely, therapies targeting immune cell migration following antigen challenge are unlikely to have significant benefits, particularly considering the rapid kinetics of PIA.

Keywords:
Anaphylaxis; Animal model; Food allergy; Immunity; Peanut allergy